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We propose a fast and versatile algorithm to calculate local and transport properties such as conductance,
shot noise, local density of state, and local currents in mesoscopic quantum systems. Within the nonequilibrium
Green function formalism, we generalize the recursive Green function technique to tackle multiterminal de-
vices with arbitrary geometries. We apply our method to analyze two recent experiments: an electronic Mach–
Zehnder interferometer in a two-dimensional gas and a Hall bar made of graphene nanoribbons in a quantum
Hall regime. In the latter case, we find that the Landau edge state pinned to the Dirac point gets diluted upon
increasing carrier density.
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I. INTRODUCTION

The field of quantum transport at the nanometer scale
now includes a large number of systems involving very dif-
ferent physics. Examples include, for instance, mesoscopic
devices in two-dimensional heterostructures,1 graphene
nanoribbons,2 superconducting weak links,3 molecular elec-
tronic devices,4 and ferromagnetic multilayer nanopillars.5,6

Although those systems have different structures and geom-
etries, they are all quantum systems connected to the macro-
scopic world through electrodes, and, consequently, formal-
isms developed to describe one of them can often be adapted
to the others. This is, in particular, the case of the widely
used Landauer–Büttiker formalism,7 which focuses on the
scattering properties of the system. The formalism is very
intuitive and general. However, it is not well suited when one
is interested in what happens inside the sample or for per-
forming a microscopic calculation for a given device. An
alternative mathematically equivalent approach is referred to
as the nonequilibrium Green function �NEGF� formalism.8,9

NEGF, which is derived from the Keldysh formalism,10 pro-
vides a simple route to compute the physical observables
from a microscopic model. It is now an extremely popular
numerical approach to a very wide class of physical prob-
lems �see references in Ref. 11�. For instance, all the refer-
ences mentioned in the examples above correspond to calcu-
lation done with this technique either from ab initio or from
phenomenological models.1–6,12,13 At the core of NEGF is the
calculation of the retarded Green function G of the mesos-
copic region in the presence of the �semi-infinite� electrodes.
A straightforward method consists of a direct inversion of the
Hamiltonian H. However, when doing so, one is restricted to
rather small systems of a few thousand sites: For a system of
size L in dimension d, the computing time scales as L3d

while the needed memory scales as L2d. An alternative algo-
rithm, known as the recursive Green function technique,1,5,14

takes advantage of the structure of H to reduce drastically the
computing time down to L3d−2, putting systems of a few 106

sites within reach. In its original version,14–16 only the trans-
port properties of the device could be computed, but recent
progresses made it possible to get access to observables in-
side the sample �such as local electronic density or local
currents1,17� at a cost of L2d−1 in memory. The recursive

Green function technique suffers, however, from a serious
limitation: In its original formulation, it is intrinsically one
dimensional, and most applications are done for quasi-one-
dimensional bars connected to two electrodes. On the other
hand, real devices often have more than two electrodes and
more complicated geometries. This paper is devoted to a
general versatile algorithm to simulate multiterminal systems
with arbitrary geometries and topologies. Earlier works in
this direction are scarce. Baranger et al.18 considered the
Hall effect in a two-dimensional �2D� cross �a specific code
was developed to handle this geometry�. Modular
algorithms19,20 allow us to compute the properties of 2D
quantum ballistic billiards. Most references with multitermi-
nals involve direct inversions with small system sizes; others
involve adaptation of the algorithm to the specific problem at
hand.21,22 Competitors of the present algorithm are also being
developed23,24 by using alternative techniques such as
decimation.25

In this paper, we show that the recursive Green function
algorithm can be generalized to deal with arbitrary geometry,
topology, number of connected electrodes, and inner degrees
of freedom �like spin for ferromagnets or electron/hole in
superconductors�. Our algorithm is conceptually simpler than
the original, as it is not based on a specific geometry. The
sites are added one by one in a manner reminiscent of the
knitting of a sweater. The algorithm is optimum in term of
speed and a significant gain in memory is also achieved. The
method allowed us to study the electronic Mach–Zehnder
interferometer26,27 and anomalous quantum Hall effect in a
graphene Hall bar,28 which have been the subject of recent
experiments. Going from the first system to the second re-
quired virtually no additional development.

II. NONEQUILIBRIUM GREEN FUNCTION FORMALISM
IN A NUTSHELL

We consider a quantum system of N sites connected to
several conducting electrodes. We use a general tight-binding
Hamiltonian for the system,

Ĥ = �
i�j

N

tijci
†cj + �

i=1

N

�ici
†ci, �1�

where ci
† �ci� denotes the usual creation �annihilation� opera-

tor of an electron on site i. The site index i stands for the
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position in space but can also include other possible degrees
of freedom like spin or electron/hole. tij is usually very
sparse as only nearest �or next nearest� neighboring sites are
connected. The electrodes l are semi-infinite systems at equi-
librium with temperature Tl and chemical potential �l. They
can be “integrated” out of the equations of motion and only
appear in the formalism through self-energies �l that provide
boundary conditions at the connected sites. We use an algo-
rithm introduced by Ando29 �see also Ref. 13� for the calcu-
lation of those self-energies. The physical observables can be
simply related to the nonequilibrium lesser Green function
Gij

��E�= i�dte−iEt�cj
†ci�t��. For instance, the local density �i

and current Iij reads

�i =
1

2�
Im �

−	

	

dEGii
��E� , �2�

Iij = �
−	

	

dE�tijGji
��E� − tjiGij

��E�	 . �3�

The simplicity of NEGF comes from the fact that in the
absence of electronic correlation, G� �which describes the
system out of equilibrium� has a very simple expression in
terms of the retarded Green function G: G�=G��G†, where
��=�l f l��l

†−�l� and f l=1 / �1+exp��E−�l� /kTl	� is the
Fermi function. G itself is simply defined in terms of the
one-body Hamiltonian matrix Hij = tij +�i
ij by

G�E� =
1

E − H − �
l

�l

. �4�

III. KNITTING, SEWING, AND UNKNITTING
ALGORITHMS

A. Basic idea behind recursive algorithms

The problem of computing G�E� is thus reduced to a con-
ceptually simple task, finding the inverse of the H matrix �to
which we implicitly include the self-energies�. Our basic tool
is to judiciously divide H=H0+V between an unperturbed
part H0 and a perturbation V. Typically, the perturbation will
be the hopping elements that allow us to glue two separated
parts of the system together. The Dyson equation G=g
+gVG, which relates G to the known g=1 / �E−H0�, is the
corner stone of all recursive algorithms. Suppose that �i� one
is interested only in G�� for a small subset of sites labeled by
� and � �the electrode sites, for instance� and �ii� Vij only
connects a small number of sites labeled by i and j. The
following glueing sequence allows one to get the needed
matrix elements in three steps. The Dyson equation restricted
to the connected sites �via Vij� is a close equation,

Gij = gij + �
kl

gikVklGlj . �5�

Since the number of those connected sites is small, the Gij
can hence be easily computed. In a second step, one obtains
the elements

G�j = g�j + �
kl

g�kVklGlj . �6�

In the third step,

G�� = g�� + �
kl

g�kVklGl� �7�

are computed. In the original recursive Green function
algorithm,14 the above sequence is used in the following
way: One considers a bar of width M and length L. The bar
is sliced in L stacks and the perturbation Vij are the hopping
elements that connect the different stacks. The system is then
built recursively as the stacks are added one at a time, and at
each step the glueing sequence is used. The gij are known
either from the previous calculation �for the bar side� or from
a numerical direct calculation for the added stack.

B. Knitting algorithm for global transport properties

Our knitting algorithm is based on the same glueing se-
quence, but the sites are added one by one. We start by
indexing the sites according to the order in which they are
going to be added to the system. Figure 1 shows a cartoon of
a typical system together with the notations used in the fol-
lowing. The main difficulty of the algorithm lies in the book-
keeping of the various Green function elements, and precise
definitions are compulsory. At a given stage of the knitting,
when we have already included sites 1 , . . . ,A−1 and are
about to include site A, we distinguish between four catego-
ries of sites labeled by different indices.

�1� The connected sites are the sites that are directly con-
nected to A via hopping elements tA. They are labeled by
the index  and appear in a very small number �less than the
number of neighbors of a given site A�.

�2� The interface sites labeled by i and j are the sites that
still miss some of their neighbors, i.e., that will be them-
selves connected sites later in the knitting. Hence, the Green
function elements for those sites is to be kept in memory.
Note that it is a dynamical definition; i.e., at each step, some
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FIG. 1. �Color online� The system scheme and notations. The
sites are labeled according to the order in which they are added to
the system. The boxes define the three electrodes coupled to the
mesoscopic system. The various letters stand for the added site �A�,
electrode sites ��, �, and ��, connected sites �1 and 2�, and in-
terface sites �i and j�, as discussed in the text. Bold circles indicate
sites whose GF elements are updated at the current knitting step.
The thick dashed line separates the part already included �left� from
the part that is still to be knitted to the system �right�.
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sites appear and others disappear from the interface. The
total number M of interface sites scales as a surface M
�Nd−1.

�3� The updated sites are the sites whose Green function
elements are updated at each step of knitting. They belong
either to the interface or to the electrodes. They are noted by
� and �, bold circles in Fig. 1.

With these notations, we can apply the glueing sequence
and express the Green function with the added site G�A	 in
terms of the Green function G�A−1	 of the system composed
of A−1 sites. The first step reads

GAA
�A	 = 1/
E − �A − �

̃

tAG̃
�A−1	t̃A� . �8�

Note that it is the only place where we actually perform an
inversion, and it is done on a scalar quantity. The second step
reads

G�A
�A	 = �



G�
�A−1	tAGAA

�A	 , �9�

GA�
�A	 = �



GAA
�A	 tAG�

�A−1	. �10�

The last step concentrates almost all the computing time
��M2�,

G��
�A	 = G��

�A−1	 + G�A
�A	 1

GAA
�A	 GA�

�A	. �11�

Note that the previous formula has a very simple physical
interpretation in terms of paths: The amplitude for an elec-
tron to go from site � to site � is the amplitude that avoids
site A plus the amplitude that goes through site A. The fac-
tor 1 /G�A	 removes the double counting of the loops from A
to itself. Once the glueing sequence is completed, the inter-
face is updated: The new site is added while sites that now
have all their neighbors can be removed. For instance, in Fig.
1, once site A has been added, site 1 can be deleted from
the interface. The previous sequence is iterated until all the N
sites have been added to the system. Eventually, we get G��

of the entire system. However, we only get the matrix ele-
ments between the �few� sites � and � connected to the
electrodes. Those matrix elements give access to all transport
properties such as conductance and shot noise but no infor-
mation on what happens inside the sample. The computing
time �needed memory� of the knitting algorithm scales as
M2N �M2�, in agreement with the original recursive algo-
rithm for a wire.

C. Sewing algorithm for calculating local observables

We now proceed with extending the knitting algorithm to
the calculations of local observables. In practice, we need
matrix elements of the type G�r between electrodes and any
inner site of the system r. Such an extension has been done
in Ref. 1 for the original recursive algorithm: One performs a
first recursive calculation and saves the partial Green func-
tions G�r

�r	 for future use. When the calculation is completed,
one starts a new recursive calculation, beginning from the

other hand of the system. Along the way, one recovers the
saved Green functions for the left part of the system and uses
the glueing sequence to glue them with the �freshly calcu-
lated� Green function of the right part of the system. This
scheme can be generalized to an arbitrary geometry as well:
We first perform a full knitting calculation. Then, we start
backward the sewing algorithm and sew the sites A one by
one in reversed order �i.e., from N to 1�. We label sites with
an index smaller than A �“left” part of the system� by indices
without a prime �i , j , . . . � and the sites �strictly� higher than
A �“right”� by primed indices �i� , j� , . . . �. Introducing the
“interface self-energy” Sij =�i�j�tij�Gj�i�ti�j, the glueing se-
quence reads

G�A = G�A
�A	 + �

ij

G�i
�A	SijGjA

�A	, �12�

G��A = �
j�i

G��j�tj�iGiA
�A	. �13�

The result of the calculation is then used to update Sij, and
one can proceed with A−1, and so on. The drawback of this
algorithm is that many ��NM� matrix elements G�r

�r	 must be
stored during the first knitting calculation, which limit prac-
tical calculations to a few hundred thousand sites.

D. Saving memory with unknitting

The last piece of algorithm, called unknitting, allows us to
recalculate the matrix elements G�A

�A	 in the backward calcu-
lation instead of saving them. Indeed, using the Dyson equa-
tion for H0=H−V, it is possible to “remove” sites from the
system and express G�A−1	 as a function of G�A	

G��
�A−1	 = G��

�A	 − G�A
�A	 1

GAA
�A	 GA�

�A	. �14�

The above equation should, however, be taken with care.
Indeed the interface is not the same for G�A−1	 and G�A	 so
that some of the matrix elements G�A

�A	 on the right hand side
are not stored in memory. In the bulk of the system, the
interface is of constant size so that there is only one site R
that belongs to the interface of G�A−1	 but not of G�A	. The
matrix elements for this site can also be recomputed,

G�R
�A−1	 = G�A

�A	�tRAGAA�−1 − �
�R

G�
�A−1	tAtRA

−1 ,

GR�
�A−1	 = �GAA

�A	 tAR�−1GA�
�A	 − �

�R
tAR
−1 tAG�

�A−1	,

which completes the algorithm. Theoretically, the unknitting
algorithm allows us to decrease the memory from MN to
max�N ,M2�, hence completely removing the memory bottle-
neck in the calculations. We found that it is indeed the case
in the middle of the tight-binding band where all the chan-
nels are conducting. Outside this region, the last equation
above is, however, numerically unstable and introduces an
error in the calculation that increases as exp�aN /M�. The
origin of this instability can be understood from the example

KNITTING ALGORITHM FOR CALCULATING GREEN… PHYSICAL REVIEW B 77, 115119 �2008�

115119-3



of a simple perfect one-dimensional chain with unit hopping.
In this case, Eq. �8� takes a simple form, G�A	=1 / �E
−G�A−1	�. When E�2, the chain is no longer propagative
�only evanescent waves can be found�, and this equation
converges toward a simple attractive fixed point. After sev-
eral iterations, the convergence is achieved up to numerical
precision and the initial condition is lost: The equation can
no longer be inverted to follow our steps back. We found that
the unknitting algorithm is nevertheless useful. Depending
on the precision needed, the matrix elements G�A

�A	 can be
saved in the forward calculation only every few sites instead
of every site. In practice, in the worst case �bottom of the
band where almost all modes are evanescent�, we found that
a factor of 10 in memory could be gained while keeping the
numerical precision better than 10−10.

IV. APPLICATION: MACH–ZEHNDER
INTERFEROMETER IN A TWO-DIMENSIONAL

ELECTRON GAS

As a first application of our algorithm, we consider a
Mach–Zehnder interferometer similar to the ones studied in
recent experiments.27 The devices are made in a two-
dimensional high mobility GaAs /AlGaAs heterostructures,
which we characterize by its mobility �, electronic density
ns, size L, and perpendicular magnetic field B. The simula-
tions are performed by discretizing the Schrödinger equation
on a square grid with a lattice spacing b. The resulting tight-
binding model has nearest neighbor hoppings t and disor-
dered onsite potential, which are chosen randomly within
�−W /2, +W /2	. The magnetic field is added within a dis-
cretized Landau gauge by adding a phase � in the hopping
elements t�nx,ny�

y along the y direction: t�nx,ny�
y = tei2��nx �where

�nx ,ny� is the position on the grid along x and y	. The energy

E is measured from the bottom of the band, and we found no
significant deviations from the continuum limit as long as we
kept E�0.1t. The tight-binding parameters are related to the
experimental ones as follows: ns=E / �2�tb2�, B=�h / �eb2�,
and �= �e /h�96�b2�t /W�2. The latter formula was obtained
from a calculation of the Drude conductance of our tight-
binding model and was checked by direct numerical calcula-
tions. The total number N=L2ns of electrons in the sample
and the conductance per square g=e�ns are both indepen-
dent of the discretized step b. The middle of the nth plateau
of the quantum Hall effect is found for n=E / �4�t��.

The Mach–Zehnder interferometer is the electronic analog
of the well-known optical device. The system consists of a
loop connected to four contacts, one of which lies in the
center part of the loop �see Fig. 2�a�	. The physics involved
is fairly straightforward: The system is placed under a high
magnetic field in the quantum Hall regime at the first Hall
plateau �the current is supported by one edge state�. All con-
tacts are grounded except contact 0, which is placed at a
slightly higher voltage V0. The injected current follows the
edge channel until it reaches a first quantum point contact
�QPC� which works as a perfect beam splitter and is split
into two parts �see Fig. 2�a�	. The two edge states are even-
tually recombined at the second QPC and the current I3 is
collected in contact 3. Along the way, the two edge states
pick up a difference of phases that includes the magnetic flux
� through the hole. Note that Fig. 2�a� is not a cartoon but an
actual calculation of the local density of current injected
from lead 0. Along the way, the two edge channels pick up a
phase difference that produces interferences. Figure 2�b�
shows the differential conductance dI3 /dV0 in units of e2 /h
as a function of flux � �in units of h /e� along with a �almost
perfect� sinusoidal fit. Our data are in complete agreement
with what is obtained from the Landauer–Büttiker theory. In
particular, the visibility V1 decreases when the transmission

FIG. 2. �Color online� Mach–
Zehnder interferometer in a 2D
gas modeled by a scalar tight-
binding model. The mobility is �
=5�105 cm2 /V s, the electron
density is ns=1010 cm−2, and the
magnetic field is B=0.2 T. �a� Lo-
cal current intensity when a bias
voltage is applied to lead 0 and
the other contacts are grounded
�1.2�106 sites; blue corresponds
to no current and red to maximum
current�. �b� Differential conduc-
tance dI3 /dV0 as a function of the
number of flux quanta � through
the hole. �c� Visibility coefficients
V1 and V2 �see text� as a function
of the electron mobility �.
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T of one QPC departs from 1 /2 as V1=2�T�1−T�.
To proceed further, we increase the disorder in our sample

and measure the visibility of the interference pattern as a
function of the mobility �. We find that dI3 /dV0��� is well
fitted by including two harmonics,

dI3/dV0 � 1 + V1 cos 2�� + V2 cos 4�� . �15�

The parameters V1 and V2 are shown in Fig. 2�c� for a typical
sample. For ��4�105 cm2 V−1 s−1, there is no backscatter-
ing in the sample and the interference pattern is perfect �V1

=1 and V2=0�. Below 4�105 cm2 V−1 s−1, however, back-
scattering sets in and visibility decreases strongly. More im-
portantly, visibility becomes extremely sensitive to the disor-
der configuration, and huge sample to sample fluctuations are
observed. Simultaneously, the second harmonic V2 sets in.
Those results are readily understood by looking at the current
intensities injected from lead 0, as shown in Fig. 3 for two
different samples with mobilities slightly lower than that in
Fig. 2�a�. When the disorder is strong enough, the edge chan-
nels get significantly disturbed and are able to reach �par-
tially� the opposite wall �as seen in Fig. 3�b�	. This back-
scattering leads to a decrease of the visibility. At the same
time, a path that avoids contact 1 appears, which causes V2 to
increase �the corresponding path makes a complete tour of
the central island, see the inset of Fig. 3�a�	. It is notable that
no second harmonic V2 was observed experimentally, which
is, as the samples had a mobility of the order of
106 cm2 V−1 s−1 or higher,26,27 consistent with our findings.
We conclude that static disorder �or, more trivially, a bad
central Ohmic contact� cannot be at the origin of the reduced
visibility in these experiments.

FIG. 3. �Color online� Same as Fig. 2�a� for two dirtier samples
with mobility �=3�105 cm2 /V s �a� and �=2.5�105 cm2 /V s
�b�, electron density ns=1010 cm−2, and magnetic field B=0.2 T.
Zoom of �a� shows the current that escapes the first contact and
makes the second loop. It is responsible for the presence of a sec-
ond visibility harmonic V1=1 V2=0.1. Similar zoom of �b� shows
backscattered current, which is recovered by contact 2. V1=0.99
and V2=0.01.

FIG. 4. �Color online� Quantum Hall effect in graphene. Hall conductance xy and longitudinal resistance �xx are plotted as a function of
inverse magnetic field 1 /� �a� and carrier density n �b� in the presence of a small disordered potential �10% of the hopping matrix elements�.
In �a� the carrier density is 0.18e/hexagon, while in �b� a magnetic flux �=0.014h /e per hexagon is applied. The inset of �b� shows a zoom
of the transition between plateaus. �c� shows the local current intensity when current is injected from both contacts 1 and 4 �3�105

hexagons, N=2�.
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V. APPLICATION: ANOMALOUS QUANTUM HALL
EFFECT IN A GRAPHENE HALL BAR

In this second application, we consider a Hall bar in
graphene in the quantum Hall regime �see Fig. 4�c�	. We
used the standard tight-binding approach30 for the graphene
hexagonal lattice, where each site represents a carbon atom
and is connected to his neighbors by a hopping t. We use
zigzag edges for the system and the leads that are semi-
infinite nanoribbons. To avoid reflection at the lead/system
interface, the leads also include the magnetic field. The mag-
netic field is included within a gauge similar to the one used
for the Mach–Zehnder above by introducing a phase � in the
hopping elements between the A and B sites. Noting a
�1.42 Å�, the distance between carbon atoms, the electronic
density ns and magnetic field B are related to E / t and the
total flux � �in unit of h /e� per hexagon as follows: ns
= �E /at�24 / �9�� and B=2h� / �3�3ea2�. The middle of Nth
Hall plateau is found for N+1 /2=E2 / �2�3��t2�.

Figure 4 shows the transverse conductance and longitudi-
nal resistance as a function of carrier density �a� or inverse
magnetic flux �b� for a graphene Hall bar. Our results for a
mesoscopic Hall bar are numerical counterparts to the ex-
perimental data of Ref. 28. In particular, we recover the pres-
ence of plateaus in the transverse conductance at quantized
values �N+1 /2�4e2 /h. The N=0 plateau corresponds to a
Landau level pinned to the Dirac point and is special to the
Dirac equation symmetry class. We also observe mesoscopic
fluctuations at the transition between plateaus similar to
those known in usual 2D gases �see the inset of Fig. 4�a�	.
The edge current density at N=2 injected simultaneously
from contacts 1 and 4 is plotted in Fig. 4�c�, which is the
graphene counterpart to Fig. 2�c�.

We note one important difference between the edge states
of graphene and those of a regular heterostructure: While
Fig. 4�c� has been made for N=2, i.e., for the third plateau in
the sequence, one observes only two peaks in the local cur-
rent density, i.e., apparently two edge states only. This is
revealed more quantitatively in Fig. 5 where we have plotted
the cross section of the current density for the first plateaus
of both the graphene �N=0,1 ,2 ,3� and the heterostructure
�n=1,2 ,3 ,4�. The areas under those curves correspond, re-

spectively, to 1 /2, 3 /2, 5 /2, and 7 /2 in the graphene and to
1, 2, 3, and 4 in the heterostructure. The numbers of peaks,
however, is 1, 1, 2, and 3 and 1, 2, 3, and 4, respectively, so
that the N=0 peak �corresponding to the E=0 Landau level�
gets blurred behind the other peaks upon increasing carrier
density. This peculiar behavior could possibly be observed in
scanning tunneling microscopy or local compressibility
experiments.31

VI. CONCLUSION

We have presented a set of algorithms that allows us to
calculate the transport and local properties of a generic class
of tight-binding models. Using the unknitting technique,
some significant gain of memory could be gained with re-
spect to previous techniques. However, our main point here
is the global simplicity of the algorithm. We could easily
implement it to get a versatile code that treats complicated
geometries, such as the ones presented in the applications,
with the same ease as one treats the usual quasi-one-
dimensional bar, ubiquitous in the literature.
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APPENDIX: IMPLEMENTATION TIPS

In this appendix, we have grouped a few technical points
that can help us to get significant gains in computing time or,
maybe more importantly, in human development time.

�1� The computing time for adding one site in the knitting
algorithm is dominated by the last step of the glueing se-
quence �Eq. �11�	 and scales as O�M2�. Hence, almost all the
computing time of the algorithm is concentrated in a single
line of code, which can be optimized aggressively. The best
results were obtained by using low level BLAS routines for
this simple step. Note that the only inversions that take place
in the algorithm are scalars: At no point do we need to rely
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FIG. 5. �Color online� Comparison of the edge channels for a graphene �a� and a semiconductor heterostructure �b� two-dimensional
electron gases. The plots show the local current density in the y direction dIy�x� /dV as a function of the distance x from the border of the
sample for four consecutive Hall plateaus corresponding to N=0,1 ,2 ,3 for graphene �a� and n=1,2 ,3 ,4 for the heterostructure �b�. All
graphs are translated for clarity from bottom to top. The magnetic field is B=14 T.
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on matrix inversion routines in contrast to the original recur-
sive technique.

�2� A practical difficulty is to maintain dynamically the
list of active interface sites. We use the following simple
algorithm: To each interface site is associated a list of the
site’s neighbors that have not yet been knitted to the system.
As new sites are knitted to the system, this list is updated.
When a site has all his neighbors knitted, he can be removed
from the interface.

�3� The algorithms described in this paper allow us to
solve a very generic class of tight-binding models. Almost as
important as those solvers is the ability to easily construct
new systems. In our implementation, we represent internally
a system as a generic graph: Each site possesses the list of its
neighbors, together with the corresponding matrix elements.
A set of routines is used to operate on those graphs. A very

important one is a function that allows us to stick two sys-
tems together by identifying some sites of the two systems.
This routine allows us to construct a system from small
pieces in a “legolike” way. For instance, the system of Fig.
2�c� is obtained in four lines of code by “sticking” four rect-
angular systems together.

�4� The intensive pieces of the code should be written in a
low level language �in our case, C���. However, we have
found that a very significant gain in developing time could
be obtained by making use of the code in a higher level
script language. In our case, we use Python, and the auto-
matic wrapping of the C�� code into the Python API has
been done with SWIG. The system constructions, calculation
and plotting are done in small Python programs that consti-
tute our input files.
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